Sabtu, 06 Juni 2009

Tentang Teknik Kimia

Teknik kimia

Teknik kimia (Inggris: chemical engineering) adalah ilmu teknik atau rekayasa yang mempelajari pemrosesan bahan mentah menjadi barang yang lebih berguna, dapat berupa barang jadi ataupun barang setengah jadi. Ilmu teknik kimia diaplikasikan terutama dalam perancangan dan pemeliharaan proses-proses kimia, baik dalam skala kecil maupun dalam skala besar seperti pabrik. Insinyur teknik kimia yang pekerjaannya bertanggung jawab terhadap perancangan dan perawatan proses kimia pada skala pabrik dikenal dengan sebutan "insinyur proses" (process engineer). Selain itu, insinyur teknik kimia juga terkait dengan penelitian dan pengembangan proses kimia.

Contoh

Berikut ini adalah contoh yang mengilustrasikan peran seorang insinyur teknik kimia di pabrik:

“Perbedaan antara teknik kimia dan kimia dapat diilustrasikan dengan mengambil contoh proses produksi jus jeruk. Seorang ahli kimia akan berusaha untuk meneliti metode-metode ekstraksi jus jeruk. Metode yang paling sederhana yang mungkin ditemukan adalah memotong jeruk menjadi dua bagian dan kemudian memerasnya. Metode yang lebih rumit adalah dengan cara mengupas kulit jeruk dan kemudian menghancurkan jeruk untuk memperoleh jusnya.

Sebuah perusahaan kemudian menginstruksikan seorang insinyur teknik kimia untuk merancang pabrik penghasil jus jeruk dengan kapasitas produksi beberapa ribu ton jus per tahun. Insinyur tersebut akan menganalisis proses-proses produksi yang mungkin dan kemudian mengevaluasi keekonomisan setiap proses yang mungkin. Walaupun metode produksi jus dengan cara memeras sangat sederhana, proses ini tidak ekonomis karena memerlukan ribuan orang untuk mencapai target produksi. Oleh karena itu, metode lain akan dipilih (mungkin metode pengupasan dan penghancuran). Dari contoh ini, dapat dilihat bahwa proses produksi yang paling sederhana dalam skala laboratorium belum tentu merupakan metode paling ekonomis pada suatu pabrik."

Penjelasan Umum

Teknik kimia selalu menitikberatkan pekerjaannya untuk menghasilkan proses yang ekonomis. Untuk mencapai tujuan ini, seorang insinyur teknik kimia dapat menyederhanakan atau memperumit aliran proses produksi untuk memperoleh proses yang ekonomis. Selain melalui perancangan aliran proses produksi, seorang insinyur teknik kimia juga dapat menghasilkan proses yang ekonomis dengan merancang kondisi operasi. Beberapa reaksi kimia memiliki laju reaksi yang lebih tinggi pada tekanan atau temperatur operasi yang lebih tinggi. Proses produksiamonia adalah contoh dari pemanfaatan tekanan tinggi. Agar laju pembentukan amonia cepat, reaksi dilangsungkan dalam suatu reaktorbertekanan tinggi.

Proses-proses kimia berlangsung dalam peralatan proses. Peralatan proses umumnya merupakan satu unit operasi. Unit-unit operasi kemudian dirangkaikan untuk melakukan berbagai kebutuhan dari sintesis kimia ataupun dari proses pemisahan. Pada beberapa unit operasi, peristiwa sintesis kimia dan proses pemisahan berlangsung secara bersamaan. Penggabungan dari keduanya ini bisa dilihat dari proses distilasi reaktif.

Ilmu-ilmu yang menjadi dasar dalam teknik kimia, antara lain adalah :

Neraca massa

Neraca Massa adalah cabang keilmuan yang mempelajari kesetimbangan massa dalam sebuah sistem. Dalam neraca massa, sistem adalah sesuatu yang diamati atau dikaji. Neraca massa adalah konsekuensi logis dari Hukum Kekekalan Massa yang menyebutkan bahwa di alam ini jumlah total massa adalah kekal; tidak dapat dimusnahkan ataupun diciptakan. Contoh dari pemanfaatan neraca massa adalah untuk merancang reaktor kimia, menganalisa berbagai alternatif proses produksi bahan kimia, dan untuk memodelkan pendispersian polusi.

Penjelasan Umum

Massa yang masuk ke dalam suatu sistem harus keluar meninggalkan sistem tersebut atau terakumulasi di dalam sistem. Konsekuensi logis hukum kekekalan massa ini memberikan persamaan dasar neraca massa :

[massa masuk] = [massa keluar] + [akumulasi massa]

dengan [massa masuk] merupakan massa yang masuk ke dalam sistem, [massa keluar] merupakan massa yang keluar dari sistem, dan [akumulasi massa] merupakan akumulasi massa dalam sistem. Akumulasi massa dapat bernilai negatif atau positif. Pada umumnya, neraca massa dibangun dengan memperhitungkan total massa yang melalui suatu sistem. Pada perhitungan teknik kimia, neraca massa juga dibangun dengan memperhitungkan total massa komponen-komponen senyawa kimia yang melalui sistem (contoh: air) atau total massa suatu elemen (contoh: karbon). Bila dalam sistem yang dilalui terjadi reaksi kimia, maka ke dalam persamaan neraca massa ditambahkan variabel [produksi] sehingga persamaan neraca massa menjadi:

[massa masuk] + [produksi] = [massa keluar] + [akumulasi massa]

Variabel [produksi] pada persamaan neraca massa termodifikasi merupakan laju reaksi kimia. Laju reaksi kimia dapat berupa laju reaksi pembentukan ataupun laju reaksi pengurangan. Oleh karena itu, variabel [produksi] dapat bernilai positif atau negatif.

Jenis Neraca Massa

Neraca massa dapat berjenis integral atau diferensial. Suatu neraca massa integral menggunakan pendekatan kotak hitam dan berfokus pada karakteristik menyeluruh dari sistem. Sementara itu, neraca massa diferensial berfokus pada detail yang terjadi dalam sistem (yang juga mempengaruhi karakteristik menyeluruh). Untuk membuat suatu neraca massa integral, pada awalnya harus diidentifikasi batasan sistem, bagaimana sistem terhubung dengan lingkungan dan bagaimana lingkungan mempengaruhi sistem. Pada beberapa sistem, batasan sistem dengan mudah dapat diidentifikasi. Contohnya adalah suatu tangki reaktor dengan dinding tangki sebagai batas sistem. Pada tangki reaktor ini, lingkungan mempengaruhi sistem melalui saluran masuk tangki dan saluran keluar tangki. Untuk kasus seperti studi tanah perhutanan, penetapan vegetasi sebagai eksternal atau internal sistem (pendefinisian batasan sistem) sangat tergantung dari fokus dan tujuan studi yang dilakukan. Untuk membuat suatu neraca massa diferensial, pada awalnya perlu diidentifikasi detail yang ada dalam sistem. Reaksi yang terjadi dalam sistem dan senyawa kimia apa saja yang terlibat di dalamnya perlu dengan jelas diketahui.

Neraca energi

Neraca energi adalah cabang keilmuan yang mempelajari kesetimbangan energi dalam sebuah sistem. Neraca energi dibuat berdasarkan pada hukum pertama termodinamika. Hukum pertama ini menyatakan kekekalan energi, yaitu energi tidak dapat dimusnahkan atau dibuat, hanya dapat diubah bentuknya. Perumusan dari neraca energi suatu sistem mirip dengan perumusan neraca massa. Namun demikian, terdapat beberapa hal yang perlu diperhatikan yaitu suatu sistem dapat berupa sistem tertutup namun tidak terisolasi (tidak dapat terjadi perpindahan massa namun dapat terjadi perpindahan panas) dan hanya terdapat satu neraca energi untuk suatu sistem (tidak seperti neraca massa yang memungkinkan adanya beberapa neraca komponen). Suatu neraca energi memiliki persamaan:

Energi masuk = Energi keluar + Energi akumulasi

Tidak seperti neraca massa yang memiliki variabel produksi, neraca energi tidak memiliki variabel produksi. Hal ini disebabkan energi tidak dapat diproduksi, hanya dapat diubah bentuknya. Namun demikian, bila terdapat suatu jenis energi diabaikan, misalnya bila neraca dibuat dengan hanya memperhitungkan energi kalor saja, maka persamaan neraca energi akan menjadi

Kalor masuk + Kalor produksi = Kalor keluar + Kalor akumulasi

dengan Kalor produksi bernilai negatif jika kalor dikonsumsi. Neraca energi digunakan secara luas pada bidang ilmu murni seperti fisika, biologi,kimia dan geografi.

Reaksi kimia

Reaksi kimia adalah suatu reaksi antar senyawa kimia atau unsur kimia yang melibatkan perubahan struktur dari molekul, yang umumnya berkaitan dengan pembentukan dan pemutusan ikatan kimia. Dalam suatu reaksi kimia terjadi proses ikatan kimia, di mana atom zat mula-mula (edukte) bereaksi menghasilkan hasil (produk). Berlangsungnya proses ini dapat memerlukan energi (reaksi endotermal) atau melepaskanenergi (reaksi eksotermal). Semakin bannyak pereaksi yang bereaksi maka jumlah hasil reaksi juga akan semakin besar.

Ciri-ciri reaksi kimia :

§ Terbentuknya endapan

§ Terbentuknya gas

cth : Mg + H2SO4 --> MgSO4 + H2

§ Terjadinya perubahan warna

§ Terjadinya perubahan suhu atau temperatur

Kecepatan Reaksi Ada beberapa hal yg mempengaruhi kecepatan reaksi antara lain :

1. Kecepatan Reaksi dipengaruhi oleh ukuran partikel/zat

  Semakin luas permukaan zat maka seakin banyak tempat bersentuhan untuk berlangsungnya reaksi 
  Luas permukaan zat dapat dicapai dengan cara memperkecil ukuran zat tersebut
  Contoh :
  Kentang yang diiris tipis lebih cepat matang dibandingkan kentang yang berukuran besar dan belum diiris tipis

2. Kecepatan Reaksi dipengaruhi oleh suhu atau temperatur

  Suhu juga dapat  mempengaruhi kecepatan reaksi
  Contoh:
  Susu yang dilarutkan dgn air panas lebih cepat larut dibandingkan susu yang dilarutkan dengan air dingin 

Industri kimia

Kilang minyak, salah satu bagian dari industri kimia

Industri kimia merujuk pada suatu industri yang terlibat dalam produksi zat kimia. Industri ini mencakuppetrokimia, agrokimia, farmasi, polimer, cat, dan oleokimia. Industri ini menggunakan proses kimia, termasuk reaksi kimia untuk membentuk zat baru, pemisahan berdasarkan sifat seperti kelarutan ataumuatan ion, distilasi, transformasi oleh panas, serta metode-metode lain.

Industri kimia terlibat dalam pemrosesan bahan mentah yang diperoleh melalui penambangan, pertanian, dan sumber-sumber lain, menjadi material, zat kimia, serta senyawa kimia yang dapat berupa produk akhiratau produk antara yang akan digunakan di industri lain.

Termokimia

Josiah Willard Gibbs - pendiritermodinamika kimia

Termokimia ialah cabang kimia yang berhubungan dengan hubungan timbal balik panas dengan reaksi kimia atau dengan perubahan keadaan fisika. Secara umum, termokimia ialah penerapan termodinamikauntuk kimia. Termokimia ialah sinonim dari termodinamika kimia.

Selayang pandang

Tujuan utama termodinamika kimia ialah pembentukan kriteria untuk ketentuan penentuan kemungkinan terjadi atau spontanitas dari transformasi yang diperlukan.[1] Dengan cara ini, termokimia digunakan memperkirakan perubahan energi yang terjadi dalam proses-proses berikut:

1. reaksi kimia

2. perubahan fase

3. pembentukan larutan

Termokimia is terutama berkaitan dengan fungsi keadaan berikut ini yang ditegaskan dalam termodinamika:

§ Energi dalam (U)

§ Entalpi (H).

§ Entropi (S)

§ Energi bebas Gibbs (G)

Sebagian besar ciri-ciri dalam termokimia berkembang dari penerapan hukum I termodinamika, hukum 'kekekalan' energi, untuk fungsi keadaan berikut ini.

Energi dalam

Energi dalam (E) dirumuskan oleh persamaan E = q + w.

Jika sistem menyerap kalor, maka q bernilai positif. Jika sistem mengeluarkan kalor, maka q bernilai negatif.

w (kerja) pada rumus tersebut bernilai positif jika sistem melakukan kerja, dan akan bernilai negatif jika sistem dikenai kerja oleh lingungan.

Jadi bila suatu sistem menyerap kalor dari lingkungan sebesar 10 kJ, dan sistem tersebut juga melakukan kerja sebesar 6 kJ, maka energi dalam nya akan sebesar 4 kJ.

Energi dalam bernilai 0 jika jumlah kalor yang masuk sama besar dengan jumlah kerja yang dilakukan, dan jika kalor yang dikeluarkan sama besar dengan kerja yang dikenakan pada sistem.

Entalpi

Entalpi adalah istilah dalam termodinamika yang menyatakan jumlah energi internal dari suatu sistem termodinamika ditambah energi yang digunakan untuk melakukan kerja. Secara matematis, entalpi dapat dirumuskan sebagai berikut:

H = U + PV \,

di mana:

§ H = entalpi sistem (joule)

§ U = energi internal (joule)

§ P = tekanan dari sistem (Pa)

§ V = volume sistem (m2)

Entropi

Sebuah sistem termodinamika

Termodinamika (bahasa Yunani: thermos = 'panas' and dynamic = 'perubahan') adalah fisika energi , panas, kerja, entropi dan kespontanan proses. Termodinamika berhubungan dekat dengan mekanika statistik di mana banyak hubungan termodinamika berasal.

Selagi berhadapan dengan proses di mana sistem bertukar wujud atau energi, termodinamika klasik tidak berhubungan dengan kecepatan suatu proses berlangsung, disebut kinetik. Karena alasan ini, penggunaan istilah "termodinamika" biasanya merujuk ke termodinamika setimbang. Dengan hubungan ini, konsep utama dalam termodinamika adalah proses kuasistatik, yang diidealkan, proses "super pelan". Proses termodinamika bergantung-waktu dipelajari dalam termodinamika tak-setimbang.

Karena termodinamika tidak berhubungan dengan konsep waktu, telah diusulkan bahwa termodinamika setimbang seharusnya dinamakan termostatik.

Hukum termodinamika kebenarannya sangat umum, dan hukum-hukum ini tidak bergantung kepada rincian dari interaksi atau sistem yang diteliti. Ini berarti mereka dapat diterapkan ke sistem di mana seseorang tidak tahu apa pun kecuali perimbangan transfer energi dan wujud di antara mereka dan lingkungan. Contohnya termasuk perkiraan Einstein tentang emisi spontan dalam abad ke-20 dan riset sekarang ini tentang termodinamika benda hitam.

Pengalaman sehari-hari menunjukkan bahwa sebuah kolam tidak membeku di musim panas. Jika sebuah benda panas berinteraksi dengan benda dingin, maka tak terjadi bahwa benda panas tersebut semakin panas dan benda dingin semakin dingin, meskipun proses-proses tersebut tidaklah melanggar hukum kekekalan energi yang dinyatakan sebagai hukum pertama termodinamika.

Hukum kedua termodinamika berkaitan dengan apakah proses-proses yang dianggap taat azas dengan hukum pertama, terjadi atau tidak terjadi di alam. Hukum kedua termodinamika seperti yang diungkapkan oleh Clausius mengatakan, ?Untuk suatu mesin siklis maka tidak mungkin untuk menghasilkan efek lain, selain dari menyampaikan kalor secara kontinu dari sebuah benda ke benda lain pada temperatur yang lebih tinggi".

Bila ditinjau siklus Carnot, yakni siklus hipotesis yang terdiri dari empat proses terbalikkan: pemuaian isotermal dengan penambahan kalor, pemuaian adiabatik, pemampatan isotermal dengan pelepasan kalor dan pemampatan adiabatik; jika integral sebuah kuantitas mengitari setiap lintasan tertutup adalah nol, maka kuantitas tersebut yakni variabel keadaan, mempunyai sebuah nilai yang hanya merupakan ciri dari keadaan sistem tersebut, tak peduli bagaimana keadaan tersebut dicapai. Variabel keadaan dalam hal ini adalah entropi. Perubahan entropi hanya gayut keadaan awal dan keadaan akhir dan tak gayut proses yang menghubungkan keadaan awal dan keadaan akhir sistem tersebut.

Hukum kedua termodinamika dalam konsep entropi mengatakan, "Sebuah proses alami yang bermula di dalam satu keadaan kesetimbangan dan berakhir di dalam satu keadaan kesetimbangan lain akan bergerak di dalam arah yang menyebabkan entropi dari sistem dan lingkungannya semakin besar".

Jika entropi diasosiasikan dengan kekacauan maka pernyataan hukum kedua termodinamika di dalam proses-proses alami cenderung bertambah ekivalen dengan menyatakan, kekacauan dari sistem dan lingkungan cenderung semakin besar.

Di dalam ekspansi bebas, molekul-molekul gas yang menempati keseluruhan ruang kotak adalah lebih kacau dibandingkan bila molekul-molekul gas tersebut menempati setengah ruang kotak. Jika dua benda yang memiliki temperatur berbeda T1 dan T2 berinteraksi, sehingga mencapai temperatur yang serba sama T, maka dapat dikatakan bahwa sistem tersebut menjadi lebih kacau, dalam arti, pernyataan "semua molekul dalam sistem tersebut bersesuaian dengan temperatur T adalah lebih lemah bila dibandingkan dengan pernyataan semua molekul di dalam benda A bersesuaian dengan temperatur T1 dan benda B bersesuaian dengan temperatur T2".

Di dalam mekanika statistik, hubungan antara entropi dan parameter kekacauan adalah, pers. (1):

S = k log w

dimana k adalah konstanta Boltzmann, S adalah entropi sistem, w adalah parameter kekacauan, yakni kemungkinan beradanya sistem tersebut relatif terhadap semua keadaan yang mungkin ditempati.

Jika ditinjau perubahan entropi suatu gas ideal di dalam ekspansi isotermal, dimana banyaknya molekul dan temperatur tak berubah sedangkan volumenya semakin besar, maka kemungkinan sebuah molekul dapat ditemukan dalam suatu daerah bervolume V adalah sebanding dengan V; yakni semakin besar V maka semakin besar pula peluang untuk menemukan molekul tersebut di dalam V. Kemungkinan untuk menemukan sebuah molekul tunggal di dalam V adalah, pers. (2):

W1 = c V

dimana c adalah konstanta. Kemungkinan menemukan N molekul secara serempak di dalam volume V adalah hasil kali lipat N dari w. Yakni, kemungkinan dari sebuah keadaan yang terdiri dari N molekul berada di dalam volume V adalah, pers.(3):

w = w1N = (cV)N.

Jika persamaan (3) disubstitusikan ke (1), maka perbedaan entropi gas ideal dalam proses ekspansi isotermal dimana temperatur dan banyaknya molekul tak berubah, adalah bernilai positip. Ini berarti entropi gas ideal dalam proses ekspansi isotermal tersebut bertambah besar.

Definisi statistik mengenai entropi, yakni persamaan (1), menghubungkan gambaran termodinamika dan gambaran mekanika statistik yang memungkinkan untuk meletakkan hukum kedua termodinamika pada landasan statistik. Arah dimana proses alami akan terjadi menuju entropi yang lebih tinggi ditentukan oleh hukum kemungkinan, yakni menuju sebuah keadaan yang lebih mungkin. Dalam hal ini, keadaan kesetimbangan adalah keadaan dimana entropi maksimum secara termodinamika dan keadaan yang paling mungkin secara statistik. Akan tetapi fluktuasi, misal gerak Brown, dapat terjadi di sekitar distribusi kesetimbangan. Dari sudut pandang ini, tidaklah mutlak bahwa entropi akan semakin besar di dalam tiap-tiap proses spontan. Entropi kadang-kadang dapat berkurang. Jika cukup lama ditunggu, keadaan yang paling tidak mungkin sekali pun dapat terjadi: air di dalam kolam tiba-tiba membeku pada suatu hari musim panas yang panas atau suatu vakum setempat terjadi secara tiba-tiba dalam suatu ruangan. Hukum kedua termodinamika memperlihatkan arah peristiwa-peristiwa yang paling mungkin, bukan hanya peristiwa-peristiwa yang mungkin.

Termodinamika

Sebuah sistem termodinamika

Termodinamika (bahasa Yunani: thermos = 'panas' and dynamic = 'perubahan') adalah fisikaenergi , panas, kerja, entropi dan kespontanan proses. Termodinamika berhubungan dekat denganmekanika statistik di mana banyak hubungan termodinamika berasal.

Pada sistem di mana terjadi proses perubahan wujud atau pertukaran energi, termodinamika klasik tidak berhubungan dengan kinetika reaksi (kecepatan suatu proses reaksi berlangsung). Karena alasan ini, penggunaan istilah "termodinamika" biasanya merujuk pada termodinamika setimbang. Dengan hubungan ini, konsep utama dalam termodinamika adalah proses kuasistatik, yang diidealkan, proses "super pelan". Proses termodinamika bergantung-waktu dipelajari dalamtermodinamika tak-setimbang.

Karena termodinamika tidak berhubungan dengan konsep waktu, telah diusulkan bahwa termodinamika setimbang seharusnya dinamakan termostatik.

Hukum termodinamika kebenarannya sangat umum, dan hukum-hukum ini tidak bergantung kepada rincian dari interaksi atau sistem yang diteliti. Ini berarti mereka dapat diterapkan ke sistem di mana seseorang tidak tahu apa pun kecual perimbangan transfer energi dan wujud di antara mereka dan lingkungan. Contohnya termasuk perkiraan Einstein tentang emisi spontan dalam abad ke-20 dan riset sekarang ini tentangtermodinamika benda hitam.

Konsep dasar dalam termodinamika

Pengabstrakan dasar atas termodinamika adalah pembagian dunia menjadi sistem dibatasi oleh kenyataan atau ideal dari batasan. Sistem yang tidak termasuk dalam pertimbangan digolongkan sebagai lingkungan. Dan pembagian sistem menjadi subsistem masih mungkin terjadi, atau membentuk beberapa sistem menjadi sistem yang lebih besar. Biasanya sistem dapat diberikan keadaan yang dirinci dengan jelas yang dapat diuraikan menjadi beberapa parameter.

Sistem termodinamika

Sistem termodinamika adalah bagian dari jagat raya yang diperhitungkan. Sebuah batasan yang nyata atau imajinasi memisahkan sistem dengan jagat raya, yang disebut lingkungan. Klasifikasi sistem termodinamika berdasarkan pada sifat batas sistem-lingkungan dan perpindahan materi, kalor dan entropi antara sistem dan lingkungan.

Ada tiga jenis sistem berdasarkan jenis pertukaran yang terjadi antara sistem dan lingkungan:

§ sistem terisolasi: tak terjadi pertukaran panas, benda atau kerja dengan lingkungan. Contoh dari sistem terisolasi adalah wadah terisolasi, seperti tabung gas terisolasi.

§ sistem tertutup: terjadi pertukaran energi (panas dan kerja) tetapi tidak terjadi pertukaran benda dengan lingkungan. Rumah hijau adalah contoh dari sistem tertutup di mana terjadi pertukaran panas tetapi tidak terjadi pertukaran kerja dengan lingkungan. Apakah suatu sistem terjadi pertukaran panas, kerja atau keduanya biasanya dipertimbangkan sebagai sifat pembatasnya:

§ pembatas adiabatik: tidak memperbolehkan pertukaran panas.

§ pembatas rigid: tidak memperbolehkan pertukaran kerja.

§ sistem terbuka: terjadi pertukaran energi (panas dan kerja) dan benda dengan lingkungannya. Sebuah pembatas memperbolehkan pertukaran benda disebut permeabel. Samudra merupakan contoh dari sistem terbuka.

Dalam kenyataan, sebuah sistem tidak dapat terisolasi sepenuhnya dari lingkungan, karena pasti ada terjadi sedikit pencampuran, meskipun hanya penerimaan sedikit penarikan gravitasi. Dalam analisis sistem terisolasi, energi yang masuk ke sistem sama dengan energi yang keluar dari sistem.

Keadaan termodinamika

Ketika sistem dalam keadaan seimbang dalam kondisi yang ditentukan, ini disebut dalam keadaan pasti (atau keadaan sistem).

Untuk keadaan termodinamika tertentu, banyak sifat dari sistem dispesifikasikan. Properti yang tidak tergantung dengan jalur di mana sistem itu membentuk keadaan tersebut, disebut fungsi keadaan dari sistem. Bagian selanjutnya dalam seksi ini hanya mempertimbangkan properti, yang merupakan fungsi keadaan.

Jumlah properti minimal yang harus dispesifikasikan untuk menjelaskan keadaan dari sistem tertentu ditentukan oleh Hukum fase Gibbs. Biasanya seseorang berhadapan dengan properti sistem yang lebih besar, dari jumlah minimal tersebut.

Pengembangan hubungan antara properti dari keadaan yang berlainan dimungkinkan. Persamaan keadaan adalah contoh dari hubungan tersebut.

Hukum-hukum Dasar Termodinamika

Terdapat empat Hukum Dasar yang berlaku di dalam sistem termodinamika, yaitu:

§ Hukum Awal (Zeroth Law) Termodinamika

Hukum ini menyatakan bahwa dua sistem dalam keadaan setimbang dengan sistem ketiga, maka ketiganya dalam saling setimbang satu dengan lainnya.

§ Hukum Pertama Termodinamika

Hukum ini terkait dengan kekekalan energi. Hukum ini menyatakan perubahan energi dalam dari suatu sistem termodinamika tertutup sama dengan total dari jumlah energi kalor yang disuplai ke dalam sistem dan kerja yang dilakukan terhadap sistem.

§ Hukum kedua Termodinamika

Hukum kedua termodinamika terkait dengan entropi. Hukum ini menyatakan bahwa total entropi dari suatu sistem termodinamika terisolasi cenderung untuk meningkat seiring dengan meningkatnya waktu, mendekati nilai maksimumnya.

§ Hukum ketiga Termodinamika

Hukum ketiga termodinamika terkait dengan temperatur nol absolut. Hukum ini menyatakan bahwa pada saat suatu sistem mencapai temperatur nol absolut, semua proses akan berhenti dan entropi sistem akan mendekati nilai minimum. Hukum ini juga menyatakan bahwa entropi benda berstruktur kristal sempurna pada temperatur nol absolut bernilai nol.

Mekanika statistika

Mekanika statistika adalah aplikasi teori probabilitas, yang memasukkan matematika untuk menangani populasi besar, ke bidang mekanika, yang menangani gerakan partikel atau objek yang dikenai suatu gaya. Bidang ini memberikan kerangka untuk menghubungkan sifat mikroskopis atom dan molekul individu dengan sifat makroskopis atau limbak (bulk) materi yang diamati sehari-hari, dan menjelaskantermodinamika sebagai produk alami dari statistika dan mekanika (klasik dan kuantum) pada tingkat mikroskopis. Mekanika statistika khususnya dapat digunakan untuk menghitung sifat termodinamika materi limbak berdasarkan data spektroskopis dari molekul individual.

Kemampuan untuk membuat prediksi makroskopis berdasarkan sifat mikroskopis merupakan kelebihan utama mekanika statistika terhadap termodinamika. Kedua teori diatur oleh hukum kedua termodinamika melalui media entropi. Meskipun demikian, entropi dalam termodinamika hanya dapat diketahui secara empiris, sedangkan dalam mekanika statistika, entropi merupakan fungsi distribusi sistem pada kondisi mikro.

Tidak ada komentar:

Posting Komentar